SPECIFICATIONS

β-Lactamase is a freeze-dried product containing buffer salts and zinc and has a broad range of activity against both penicillins (βI activity) and cephalosporins (βII activity).

TABLE 1: THE SPECIFICATIONS OF β-LACTAMASE

<table>
<thead>
<tr>
<th>FORMULATION</th>
<th>UNITS</th>
<th>CAT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze dried bulk powder</td>
<td>>2 βII Units/mg (also contains approx. 20 βI Units/mg)</td>
<td>BELA-70-1431</td>
</tr>
<tr>
<td>Sterile product in vials</td>
<td>>500 βI Units/vial; >50 βII Units/vial</td>
<td>BELA-70-1401</td>
</tr>
</tbody>
</table>

UNIT DEFINITION

One Sekisui (International) unit of Penicillinase (β-Lactamase I) activity is defined as the amount of enzyme that will catalyse the hydrolysis of 1.0 micromole of benzylpenicillin per minute at 25°C and pH 7.0.

One Sekisui (International) Penicillinase unit is equivalent to 600 Levy Units, 75 Pollock Units or 91200 Kersey Kinetic Units.

One Sekisui (International) unit of Cephalosporinase (β-Lactamase II) activity is defined as the amount of enzyme that will catalyse the hydrolysis of 1.0 micromole of cephalosporin C per minute at 25°C and pH 7.0.

STERILITY

The β-Lactamase vials are sterilised by gamma-irradiation. No detectable growth in Tryptone Soya broth at 20°C to 25°C or Thioglycollate at 30°C to 35°C for fourteen days. The bulk powder is not sterile but has been filtered through a 0.45 micron filter prior to freeze drying.
Effectiveness

Sekisui Enzymes β-Lactamase has been demonstrated to inactivate the following:

Penicillins: Amdinocillin, Amoxicillin, Ampicillin, Azlocillin, Benzylpenicillin, Carbenicillin, Cloxacillin, Flucloxacillin, Methicillin, Mezlocillin, Nafcillin, Oxacillin, Piperacillin, Ticarcillin.

Cephalosporins: Cefaclor, Cefadroxyl, Cefalexin, Cefaloridine, Cefamandole, Cefazolin, Cefdinir, Cefixime, Cefonicid, Cefoperazone, Cefotaxime, Cefpodoxime, Cefprozil, Cefsulodin, Cefazidime, Ceftiofur, Ceftizoxime, Ceftriaxone, Cefuroxime.

Sekisui Enzymes β-Lactamase has also been demonstrated to inactivate Carbapenems.

Reconstituted Stability

β-Lactamase vials are stable for 4 weeks at 2-8°C after reconstitution in water.

Figure 1: β-Lactamase Liquid Stability

Applications

1. **Testing sterility of blood cultures**

 Blood cultures are routinely prepared in order to test for bacterial infection. False negative results might be obtained where the blood sample contains antibiotics. Incorporation of β-Lactamase/Penicillinase in the culture medium will overcome this problem when cephalosporins/penicillins are present.

2. **Testing for contamination of drugs by antibiotics**

 US Code of Federal regulations states that “If a reasonable possibility exists that a non-penicillin drug product has been exposed to cross-contamination with penicillin, the non-penicillin drug product shall be tested for the presence of penicillin” (21 CFR 211.176, Penicillin Contamination, FDA, BY-Lines No. 8 November 1977).
APLICATIONS (continued)

3. Environmental monitoring of antibiotic manufacturing areas
Contact plates, settle plates and air monitoring systems for testing of aseptic conditions in antibiotic manufacturing facilities need to be manufactured with agar medium for neutralisation of antibiotic. This is achieved by the addition of Penicillinase or β-Lactamase to the medium. In this way any antibiotic residues are hydrolysed and microbial contamination can be detected.

4. Sterility Testing of Bulk Antibiotics
US Pharmacopeia (USP) Chapter 71 and EP Section 2.6 describe sterility testing of bulk antibiotics, which should be shown to be free from microbial contamination. The testing requires the removal of significant amounts of active antibiotic from solution by combined filtration and the use of Penicillinase or β-Lactamase. The resulting solution is tested for the (lack of) growth of microbes. USP specifies that the amount of Penicillinase or β-Lactamase used in this removal process should be verified using a microbial challenge solution in a control sample.

OTHER AVAILABLE PRODUCTS

<table>
<thead>
<tr>
<th>CAT#</th>
<th>FORMULATION</th>
<th>UNITS</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELA-70-1491</td>
<td>Freeze dried bulk powder</td>
<td>>2 βII Units/mg</td>
<td>Active against penicillins and a wide range of cephalosporins</td>
</tr>
<tr>
<td>BELA-70-1461</td>
<td>Sterile product in vials</td>
<td>>50 βII Units/vial</td>
<td>Active against penicillins only</td>
</tr>
<tr>
<td>PENI-70-1541</td>
<td>Freeze dried bulk powder</td>
<td>>15 βI Units/mg</td>
<td></td>
</tr>
<tr>
<td>PENI-70-1545</td>
<td>Sterile product in vials</td>
<td>>3000 βI Units/vial</td>
<td></td>
</tr>
</tbody>
</table>

Note: Sekisui Enzymes β-Lactamase is for in vitro use only.

(1) Waterworth PM: An enzyme preparation inactivating all penicillins and cephalosporins, Jour Clin Path 26: 596, 1973
(4) Serge Ohresse, Stéphanie Sachere, Millpare Malsheim: Development of a culture media for microbiological air monitoring in antibiotic production area (http://mail.google.com/mail/htmlload.htmlantibiotic production area; 2001.htm)